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Abstract

This report uses the CMIP5 series of climate model simulations to produce country-
level uncertainty distributions for use in socioeconomic risk assessments of climate 
change impacts.   It provides appropriate probability distributions, by month, for 169 
countries and autonomous-areas on temperature, precipitation, maximum 
temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation 
for the historical period (1976-2005), and for decadal time periods to 2100.  It also 
provides historical and future distributions for the Arctic region on ice concentration, 
ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the 
Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 
degrees latitude. The uncertainty is meant to describe the lack of knowledge rather 
than imprecision in the physical simulation because the emphasis is on unfalsified 
risk and its use to determine potential socioeconomic impacts. The full report is 
contained in 27 volumes.
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NOMENCLATURE
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m Meter
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1.  INTRODUCTION

A goal of climate science is to more accurately predict the physical consequences of 
climate change with less uncertainty.   Until any reduced uncertainty is verified, however, 
existing estimates of uncertainty, albeit imperfect, remain unfalsified.  While it is true 
that, for example, the “ensemble of opportunity” represented by the CMIP5 experiments 
is not a legitimate representation of uncertainty, and much less valid for the probabilistic 
quantification of climate outcomes, it does exist. Yet, assuming no uncertainty, or the 
parametric, downscaled, uncertainty of an individual model, or that the mean of the 
ensemble is the best (true) estimate, is possibly more problematic.  A decade ago, 
Terbaldi, Schmidt, Murphy, and Smith produced a clear exposé of the issues for the 
Bulletin of Atomic Scientist1 that remains meaningful today.  They note that many 
decisions have to be considered in the present, whereas waiting for minimized 
uncertainty possibly imposes even greater risks and potentially removes the time window 
for effective response. It could be decades before valid uncertainty estimates are 
available.2 

1 Bulletin of Atomic Scientists, The uncertainty in climate modeling, November 26, 2007 
http://thebulletin.org/uncertainty-climate-modeling 
2 Qian, Yun, et al. "Uncertainty quantification in climate modeling and projection." Bulletin of the 
American Meteorological Society 97.5 (2016): 821-824.

http://thebulletin.org/uncertainty-climate-modeling
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Because the greater the uncertainty, the greater the risk3, the most important aspect of 
climate change to human well-being is its uncertainty.  Any decision that incorporates the 
uncertainty, then becomes a value-judgment of whether to hedge toward optimism that 
the uncertainty will go away or that the final best estimate of climatic conditions can be 
effectively accommodated by societal or engineering responses at the time.  Or, the 
value-judgment may be to pessimistically apply the uncertainty out of concern for as yet 
unknown physics and abrupt climate change risks. Delineating uncertainty is a scientific 
endeavor, but acting upon it is a societal one.  Implementing the societal decision to 
address the uncertainty, then leads to an engineering endeavor. Being conservative tends 
to have opposite implications for engineering versus science.4 Conservative science 
strives to make statements where facts provide strong statistical evidence for accuracy or 
validity. Conservative engineering strives to avoid undesirable consequences and include 
contingencies for what is not known, until evidence justifies using reduced uncertainty. 
Several studies indicate that climate change could affect international security.5,6,7,8,9  
Security, especially future security, needs to be defined in terms of risk, where risk is a 
product of probability and consequence.10 Climatic conditions could be much less or 
much greater than the best estimate. Further, year to year variations in extreme conditions 
can act as stressors that produce tipping points for existing regional tensions.  Thus, the 
uncertainty in climate forecasts can dramatically change the risk profile if tail conditions 
impose high consequences. The analysis reported here attempts to characterize 
uncertainty in climate variables for use with security risk assessments.  From a risk 
perspective, the emphasis is on how much is not known rather than on how much is 
known about the future climate. 

In the context here, socioeconomic, technological, and geopolitical conditions affect and 
are affected by climatological conditions. Although climatological projections largely 
denote changes over decades, it is legitimate to consider, for example, the probabilistic 
impact climate has on the actual weather that affects water availability, crops, and 
damage from extreme weather.  To determine potential impacts, this work considers how 

3 Backus et al., "The Near-Term Risk of Climate Uncertainty Among The US States." Climatic Change 
116.3-4 (2013): 495-522. http://link.springer.com/article/10.1007/s10584-012-0511-8
4 Boslough  et al. "The Arctic as a test case for an assessment of climate impacts on national security." 
Sandia Report SAND2008-7006, Sandia National Laboratories, Albuquerque, NM 2008.
5 National Intelligence Council, Implications for US National Security of Anticipated Climate Change, 
September 21, 2016. Report: NIC WP 2016-01, Washington, DC. 
http://www.eenews.net/assets/2016/09/21/document_pm_02.pdf 
6 Campbell, Kurt M., et al. The age of consequences: the foreign policy and national security implications 
of global climate change. Center for Strategic and International Studies, Washington DC, 2007. https://csis-
prod.s3.amazonaws.com/s3fs-public/legacy_files/files/media/csis/pubs/071105_ageofconsequences.pdf 
7 Howard, William, et al. Report of the Defense Science Board Task Force on Trends and Implications of 
Climate Change on National and International Security. Defense Science Board, Washington DC, 2011. 
https://www.hsdl.org/?view&did=692151 
8 Hsiang, Solomon M., and Marshall Burke. "Climate, conflict, and social stability: what does the evidence 
say?" Climatic Change 123.1 (2014): 39-55. http://link.springer.com/article/10.1007/s10584-013-0868-3 
9 Hsiang, Solomon M., Marshall Burke, and Edward Miguel. "Quantifying the influence of climate on 
human conflict." Science 341.6151 (2013): 1235367.
10 Kaplan, S., and B. J. Garrick. (1981). ―On the Quantitative Definition of Risk, Risk Analysis 1, no. 1, 
11–27.

http://www.eenews.net/assets/2016/09/21/document_pm_02.pdf
https://csis-prod.s3.amazonaws.com/s3fs-public/legacy_files/files/media/csis/pubs/071105_ageofconsequences.pdf
https://csis-prod.s3.amazonaws.com/s3fs-public/legacy_files/files/media/csis/pubs/071105_ageofconsequences.pdf
https://www.hsdl.org/?view&did=692151
http://link.springer.com/article/10.1007/s10584-013-0868-3
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uncertainty across and within variables changes over time for monthly metrics, but 
maintains a decadal or longer perspective on those changes.

This report and its appendices provide the estimated uncertainty in climatic variables for 
169 countries and autonomous-areas for the historical period (1976-2005), and for 
decadal time periods to 2100.  They also provide uncertainty estimates for Arctic climatic 
variable across 26 geographical areas.  Great effort was made to ensure the estimates 
across and  within countries/areas are consistent, compatible, and comparable. 
Researchers can develop risk assessments using this information by sampling from the 
uncertainty distributions to determine possible climatic conditions and their impact on 
concerns of interest, such as food production, migration, economic activity, etc.  All the 
reports are publicly available11 and the data are available upon request.12 

1.1  Uncertainty Means Greater Risk13

The focus of a scientific endeavor is to improve confidence in the validity of conclusions 
drawn from data and analysis. The focus is on the confidence in the accuracy of the result 
and the minimization of uncertainty. Risk, on the other hand, is concerned with the 
opposite position. The focus is on the maximum uncertainty and on the implications if the 
results are different from the best estimate.  Consequently, our study emphasizes tails of 
the climatic (e.g., precipitation) distribution rather than the most likely part of the 
distribution that is generally of most concern to scientists and policy makers. We 
concentrate particularly on the tail of the distribution in which there are small 
probabilities but realizable risks that the effects and consequences of climate change 
could be much more severe than predicted from the best estimates.

Uncertainty is most commonly represented via a probability density function, which is 
sometimes simply called a “probability distribution.” From a statistical perspective, the 
probability density function captures the idea of how often a given value can be expected 
to occur in comparison with other values. When the uncertainty increases, there is more 
of a chance that a variable, such as the local rise in temperature, will have a value 
different from the value that occurs most often, called the mode. The mode is the peak of 
the distribution. 

Figure 1 conceptually illustrates two probability distribution functions with the same 
mode (i.e., location of the peak value) where the blue-line distribution has greater 
uncertainty than the red-line distribution. The left (y) axis shows the measure of 
probability, and the lower (x) axis shows the increased delta (Δ) change in average 
temperature compared to a world without climate change. The blue line is above the red 
line in the right-side tail of the distribution. Extreme levels are defined as those 
conditions well-removed from the mode of the distribution, for example, changes in 

11 https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/pubs.cfm
12 Contact Dr. Thomas Lowry, Sandia National Laboratories, tslowry@sandia.gov. 
13 This section is extracted from: Backus, George, et al. "Climate Uncertainty and Implications for US 
State-Level Risk Assessment Through 2050." SAND Report 7001 (2009). Sandia National Laboratories, 
Albuquerque, NM. http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf 

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/pubs.cfm
mailto://tslowry@sandia.gov
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf
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temperature of over 5 degrees in Figures 1 and 2. Thus, there is a greater chance of the 
temperature occurring at extreme levels with the blue-line distribution. Figure 2 provides 
the same logic as Figure 1, where there is a greater concern with the average value (or 
mean) of the distribution than with the mode.

Figure 1: Probability Distribution with Constant Mean
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Figure 2: Probability Distribution with Constant Mode

In risk assessment, a useful perspective contains the cumulative distribution function 
(CDF). A CDF transforms the probability distribution, such as depicted above, to show 
the probabilities of exceeding the values of concern. For purposes of this study, we refer 
to these cumulative probabilities as “exceedance probabilities.” A CDF shows the 
probability starting at a 0% exceedance probability on the left side of a graph and 
increasing to the right toward 100%. A complementary cumulative distribution function 
(CCDF) is the reverse of a CDF. The CCDF is one (1.0) minus the CDF. It starts with the 
100% exceedance probability on the left side and drops toward the 0% exceedance 
probability. Both CDFs and CCDFs are commonly used for presenting the uncertainty in 
climate change and for assessing the risks from climate change. 

Figure 3 shows the CCDF associated with Figure 2. The lines in Figure 3 cross at the 
median of the distribution. The median is the point where there is an equal probability 
that the value, in this case the change in temperature, will be greater than or less than the 
value at the 50% exceedance probability. With skewed probability distributions, such as 
those often associated with climate change, the mode, mean, and median take on separate 
values. For a symmetric probability distribution like a Gaussian bell curve, which has 
equal tails on each side of the mode, the mode, mean and median all have the same value. 
For the skewed probability distribution associated with the blue curve of Figure 2, the 
mode is to the far left at approximately 2 degrees, the median is slightly to the right of the 
mode at approximately, in this example, 2.5 degrees, and the mean or average is at 
approximately 3 degrees.  

Figure 3: A CCDF with Uncertainty.

Figure 3 illustrates the probability that the high-temperature deltas associated with 
climate change are greater when there is a greater level of uncertainty. For instance, in 
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the “red-line” lesser-uncertainty curve, the chance of exceeding a temperature of 6 
degrees is approximately 2%, whereas for the “blue-line” greater-uncertainty curve, the 
risk of exceeding 6 degrees is approximately 11%. Further, the more uncertain blue line 
appears not to produce a 2% exceedance probability to well beyond 8 degrees, possibly 
not until a daunting 12 degrees, in this purely illustrative example. If the consequence of 
climate change also increases with temperature, the risk (the consequence multiplied by 
the probability) remains significant even at extreme conditions. Thus, the greater the 
uncertainty, the greater the risk.14 

14 Backus, George, et al. "Climate Uncertainty and Implications for US State-Level Risk Assessment 
Through 2050." SAND Report 7001 (2009). Sandia National Laboratories, Albuquerque, NM. 
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf 

http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdfb
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2. CLIMATE RISK

For climate science, the discussion tends to revolve around justifying action through the 
high levels of certainty of when and where a climate impact will occur. Science strives to 
maximize the probability that its claims are true. For example, the IPCC “Summary for 
Policymakers” focuses on the likelihood of physical impacts from climate change 
compared to historical conditions.15 There are five measures of “likely,” going from 
greater than 99% to greater than 50% probability, whereas there are only three measures 
of “unlikely,” with the lowest measure for conditions having less than a 5% probability.16 
In the realm of risk-assessment, conservative science’s best estimates are considered 
“optimistic” rather than “conservative.” Risk assessment is more concerned with the low-
probability, higher-consequence conditions than with the high-probability, lower-
consequence ones.17,18 Therefore, risk assessment in this study concentrates on the 
implications for decision making from climate-change uncertainty, as opposed to impacts 
from the expected values. A focus on an expected value may lead one to believe, for 
example, that the trend in precipitation over time is more constant and benign than what 
the uncertainty indicates. Further, the trend in expected value could give the impression 
that precipitation should decrease (or increase) by a similar amount year after year. From 
an uncertainty perspective, however, there will be years where there is more precipitation 
followed by years where there is less precipitation.19   For risk assessments, uncertainty 
remains until it is falsified with abundant differing data. Therefore, a risk analysis is 
conservative and legitimate when it errs on the side of maximized uncertainty. 

2.1. Mean-value Versus Probabilistic Values

Another important consideration for a risk assessment is that the mean-value estimates of 
climate change forecasts are typically captured as a relatively smooth progression over 
time to greater departures from historical averages. In reality, the volatility inherent to 
climate change20 means that the dangerous conditions associated with the future can be 

15 IPCC, 2014: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and 
Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. 
Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. 
Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge 
University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32. 
http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_en.pdf 
16 Mastrandrea, Michael D., et al. "The IPCC AR5 guidance note on consistent treatment of uncertainties: a 
common approach across the working groups." Climatic Change 108.4 (2011): 675-691. 
http://link.springer.com/article/10.1007/s10584-011-0178-6 
17 Kaplan, S., and B. J. Garrick. (1981). ―On the Quantitative Definition of Risk, Risk Analysis 1, no. 1, 
11–27.
18 Helton, J. C. (1994), ―Treatment of Uncertainty in Performance Assessments for Complex Systems.  
Risk Analysis 14, no. 4: 483–511.
19 Backus, George, et al. "Climate Uncertainty and Implications for US State-Level Risk Assessment 
Through 2050." SAND Report 7001 (2009). Sandia National Laboratories, Albuquerque, NM, page 30. 
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf 
20 https://climate4impact.eu/impactportal/help/faq.jsp and Kirtman, B., S.B. Power, J.A. 

http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_en.pdf
http://link.springer.com/article/10.1007/s10584-011-0178-6
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf
https://climate4impact.eu/impactportal/help/faq.jsp
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transiently experienced in the present.21  Sampling of climate uncertainty that depicts the 
volatility rather than, for example, a smooth ensemble mean, more realistically addresses 
the impacts and risks that climate change portends. Uncertainty is critical for 
understanding impacts and determining appropriate countermeasures.22  Many studies 
have considered the use-cases for climate data and the user needs.23, 24 In many instances, 
the representation of uncertainty is considered key to communicating results.25 

2.2. Country and Area-Centric Analysis

The consideration of the security implications from climate change requires a country-
centric perspective, or a perspective across a group of countries. Therefore, despite the 
limitations and caveats discussed below, the results are based strictly on the area-
weighted output from the historical and RCP 8.526 analyses within the CMIP5 collection 
of climate models runs available at the ESGF portal.27,28,29 The grid-based output from 
each of the models was mapped to countries using the same area-weighting process. No 
model was treated differently.  The ensemble of models is used to generate uncertainty 
distributions specific to each of 169 countries for selected land variables noted later. 
Except for the Arctic, data for marine areas and Antarctica are excluded from this 
analysis.

Adedoyin, G.J. Boer, R. Bojariu, I. Camilloni, F.J. Doblas-Reyes, A.M. Fiore, M. Kimoto, G.A. Meehl, M. 
Prather, A. Sarr, C. Schär, R. Sutton, G.J. van Oldenborgh, G. Vecchi and H.J. Wang, 2013: Near-term 
Climate Change: Projections and Predictability. In: Climate Change 2013: The Physical Science Basis. 
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. 
Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 
York, NY, USA. https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter11_FINAL.pdf 
21 Backus, George A., Thomas S. Lowry, and Drake E. Warren. "The Near-Term Risk of Climate 
Uncertainty Among The US States." Climatic Change 116.3-4 (2013): 495-522. 
http://link.springer.com/article/10.1007/s10584-012-0511-8 
22 Clark, Martyn P., Robert L. Wilby, Ethan D. Gutmann, Julie A. Vano, Subhrendu Gangopadhyay, 
Andrew W. Wood, Hayley J. Fowler, Christel Prudhomme, Jeffrey R. Arnold, and Levi D. Brekke. 
"Characterizing uncertainty of the hydrologic impacts of climate change." Current Climate Change Reports 
2, no. 2 (2016): 55-64.
23 King, David, et al. "Climate change–a risk assessment." Centre for Science Policy, University of 
Cambridge. (2015). http://www.csap.cam.ac.uk/media/uploads/files/1/climate-change--a-risk-assessment-
v11.pdf   
24 Zubler, Elias M., et al. "Climate change signals of CMIP5 general circulation models over the Alps–
impact of model selection." International Journal of Climatology (2015).
25 Déandreis, Céline, et al. "Towards a dedicated impact portal to bridge the gap between the impact and 
climate communities: Lessons from use cases." Climatic change 125.3-4 (2014): 333-347. 
http://link.springer.com/article/10.1007/s10584-014-1139-7/fulltext.html   
26 Van Vuuren, Detlef P., et al. "The representative concentration pathways: an overview." Climatic change 
109 (2011): 5-31. http://link.springer.com/article/10.1007/s10584-011-0148-z%20/fulltext.html 
27 Earth System Grid Federation (ESGF) June to September 2015 http://esgf.llnl.gov/ 
https://pcmdi.llnl.gov/search/cmip5/ 
28 Taylor, Karl E., Ronald J. Stouffer, and Gerald A. Meehl. "An overview of CMIP5 and the experiment 
design." Bulletin of the American Meteorological Society 93.4 (2012): 485-498. https://e-reports-
ext.llnl.gov/pdf/482749.pdf 
29 Guide to cmip5 http://cmip-pcmdi.llnl.gov/cmip5/guide_to_cmip5.html 

https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter11_FINAL.pdf
http://link.springer.com/article/10.1007/s10584-012-0511-8
http://www.csap.cam.ac.uk/media/uploads/files/1/climate-change--a-risk-assessment-v11.pdf
http://www.csap.cam.ac.uk/media/uploads/files/1/climate-change--a-risk-assessment-v11.pdf
http://link.springer.com/article/10.1007/s10584-014-1139-7/fulltext.html
http://link.springer.com/article/10.1007/s10584-011-0148-z%20/fulltext.html
https://pcmdi.llnl.gov/search/cmip5/
https://e-reports-ext.llnl.gov/pdf/482749.pdf
https://e-reports-ext.llnl.gov/pdf/482749.pdf
http://cmip-pcmdi.llnl.gov/cmip5/guide_to_cmip5.html
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Sea level rise and its uncertainty is noted elsewhere,30,31,32,33,34 and recent research 
indicates potential revisions35,36 that would be too premature to assess here. Analyses of 
the impacts from sea-level rise are also noted elsewhere.37, 38,39,40,41,42,43,44 

30 Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. 
Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T. Pfeffer, D. Stammer and A.S. Unnikrishnan, 2013: Sea 
Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-
K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. 
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 
http://www.climatechange2013.org/images/report/WG1AR5_Chapter13_FINAL.pdf 
31 Strauss, B. H., S. Kulp, and A. Levermann. "Mapping choices: carbon, climate, and rising seas, our 
global legacy." Princeton, NJ: Climate Central (2015). 
http://sealevel.climatecentral.org/uploads/research/Global-Mapping-Choices-Report.pdf 
32 Slangen, A. B. A., et al. "Projecting twenty-first century regional sea-level changes." Climatic Change 
124.1-2 (2014): 317-332. 
http://pordlabs.ucsd.edu/ltalley/sio219/winter_2015/slangen_etal_climchange2014.pdf 
33 Jevrejeva, Svetlana, Aslak Grinsted, and J. C. Moore. "Upper limit for sea level projections by 2100." 
Environmental Research Letters 9, no. 10 (2014): 104008. http://iopscience.iop.org/article/10.1088/1748-
9326/9/10/104008 
34 DeConto, Robert M., and David Pollard. "Contribution of Antarctica to past and future sea-level rise." 
Nature 531.7596 (2016): 591-597.
35 Hansen, James, et al. "Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate 
modeling, and modern observations that 2 C global warming could be dangerous." Atmospheric Chemistry 
and Physics 16.6 (2016): 3761-3812. http://www.atmos-chem-phys.net/16/3761/2016/acp-16-3761-2016-
discussion.html 
36 Jevrejeva, Svetlana Luke P. Jackson, Riccardo E. M. Riva, Aslak Grinsted, and John C. Moore, Coastal 
sea level rise with warming above 2 °C PNAS 2016 ; doi:10.1073/pnas.1605312113 
http://www.pnas.org/content/early/2016/11/02/1605312113 
37 Werner, Adrian D., and Craig T. Simmons. "Impact of sea‐level rise on sea water intrusion in coastal 
aquifers." Ground Water 47.2 (2009): 197-204. 
https://www.researchgate.net/profile/Craig_Simmons2/publication/23976090_Impact_of_Sea-
Level_Rise_on_Sea_Water_Intrusion_in_Coastal_Aquifers/links/55a02b8508ae032ef0545700.pdf 
38 Nicholls, Robert J., and Anny Cazenave. "Sea-level rise and its impact on coastal zones." science 
328.5985 (2010): 1517-1520. http://science.sciencemag.org/content/328/5985/1517 
39 Hallegatte, Stephane, et al. "Future flood losses in major coastal cities." Nature climate change 3.9 
(2013): 802-806.  
40 Neumann, J. E., Emanuel, K., Ravela, S., Ludwig, L., Kirshen, P., Bosma, K., & Martinich, J. (2015). 
Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, 
adaptation, and benefits of mitigation policy. Climatic Change, 129(1-2), 337-349.
41 Tebaldi, Claudia, Benjamin H. Strauss, and Chris E. Zervas. "Modelling sea level rise impacts on storm 
surges along US coasts." Environmental Research Letters 7.1 (2012): 014032.
42 Yin, Jianjun, Michael E. Schlesinger, and Ronald J. Stouffer. "Model projections of rapid sea-level rise 
on the northeast coast of the United States." Nature Geoscience 2.4 (2009): 262-266.
43 NOAA, Global sea level rise scenarios for the United States National Climate Assessment. US 
Department of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric 
Research, Climate Program Office, 2012.
44 Weiss, Jeremy L., Jonathan T. Overpeck, and Ben Strauss. "Implications of recent sea level rise science 
for low-elevation areas in coastal cities of the conterminous USA." Climatic Change 105.3-4 (2011): 635-
645

http://www.climatechange2013.org/images/report/WG1AR5_Chapter13_FINAL.pdf
http://sealevel.climatecentral.org/uploads/research/Global-Mapping-Choices-Report.pdf
http://pordlabs.ucsd.edu/ltalley/sio219/winter_2015/slangen_etal_climchange2014.pdf
http://iopscience.iop.org/article/10.1088/1748-9326/9/10/104008
http://iopscience.iop.org/article/10.1088/1748-9326/9/10/104008
http://www.atmos-chem-phys.net/16/3761/2016/acp-16-3761-2016-discussion.html
http://www.atmos-chem-phys.net/16/3761/2016/acp-16-3761-2016-discussion.html
http://www.pnas.org/content/early/2016/11/02/1605312113
https://www.researchgate.net/profile/Craig_Simmons2/publication/23976090_Impact_of_Sea-Level_Rise_on_Sea_Water_Intrusion_in_Coastal_Aquifers/links/55a02b8508ae032ef0545700.pdf
https://www.researchgate.net/profile/Craig_Simmons2/publication/23976090_Impact_of_Sea-Level_Rise_on_Sea_Water_Intrusion_in_Coastal_Aquifers/links/55a02b8508ae032ef0545700.pdf
http://science.sciencemag.org/content/328/5985/1517
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2.3. Ensemble and Probabilistic Consistency

To the extent possible, the analysis used the same ensemble of models for estimating the 
full set of relevant variables. This approach ensures the consistency of interpretation 
across variables over temporal and spatial dimensions.45, 46 Nonetheless, not all climate 
models produce the same variables. In those instances, where some models did not report 
a particular variable, all available models within the fixed ensemble set were used, rather 
than adding the results from models outside of the selected set. Very few models contain 
Arctic area detail. Several, but not all, of the climate models in the CMIP5 collection 
produce the full set of variables for country-based concerns.  As such, the ensemble set is 
maximally composed of the historic and RCP 8.5 runs for the models noted in Table 1. A 
brief overview and references for each model are provided in Chapter 9 of the Fifth 
Assessment Report. 47   The represented historical and future variable distributions 
correspond to the CMIP5 experiments 3.2 and 4.2, respectively.48

Access1.0 GISS-E2-H
Access1.3 HadGEM2-CC
BCC-CSM1.1 IPSL-CM5A-MR
BNU-ESM IPSL-CM5A-LR
CanESM2 MIROC-ESM
CCSM4 MIROC5
CESM-CAM5.1 MPI-ESM-LR
CNRM-CM5 MRI-CGCMC3
CSIRO-Mk3.6 MRI-ESM1
GFDL-CM3 NorESM1-M
GFDL-ESM2M NorESM1-ME

Table 1: List of Ensemble Models

45 Zubler, Elias M., et al. "Climate change signals of CMIP5 general circulation models over the Alps–
impact of model selection." International Journal of Climatology (2015).
46 Tebaldi, C., & Sansó, B. (2009). Joint projections of temperature and precipitation change from multiple 
climate models: a hierarchical Bayesian approach. Journal of the Royal Statistical Society: Series A 
(Statistics in Society), 172(1), 83-106.
47 Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S.C. Chou, W. Collins, P. Cox, F. Driouech, S. Emori, 
V. Eyring, C. Forest, P. Gleckler, E. Guilyardi, C. Jakob, V. Kattsov, C. Reason and M. Rummukainen, 
2013: Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution 
of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 
[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and 
P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 
USA. https://www.ipcc.ch/pdf/assessment-report/ar5/.../WG1AR5_Chapter09_FINAL.pdf 
48 Taylor, Karl E., Ronald J. Stouffer, and Gerald A. Meehl. "An overview of CMIP5 and the experiment 
design." Bulletin of the American Meteorological Society 93.4 (2012): 485-498. https://e-reports-
ext.llnl.gov/pdf/482749.pdf    

https://www.ipcc.ch/pdf/assessment-report/ar5/.../WG1AR5_Chapter09_FINAL.pdf
https://e-reports-ext.llnl.gov/pdf/482749.pdf
https://e-reports-ext.llnl.gov/pdf/482749.pdf
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Accordingly, there are a maximum of 22 data points with which to calculate the 
uncertainty distribution for any variable.  The small number of data points means that the 
estimated uncertainty in the uncertainty is appropriately larger than if all the models were 
utilized, due to the increased (Gaussian) standard error of the estimate.49  Although it is 
possible to reduce the error by including all models that have any particular variable, this 
is counterproductive to a risk assessment because the relationship among multiple 
variables, such as temperature and precipitation is as important as the individual values. 
The use of a fixed ensemble ensures the prioritization of this consistency over efforts to 
reduce the calculated uncertainty of individual variables.  

The evident uncertainty means the risk is not falsified and therefore should be included in 
assessment of impacts. High sensitivity to a particular variable or combination of 
variables would indicate the benefits of research that might reduce the uncertainty in 
model results, but simultaneously indicates the need for planning mitigations to such 
impacts when the uncertainty is irreducible.  

There are those situations where, although all data are only from the ensemble of Table 1, 
some models do not report all of the variables in either the historical and forecasted 
period.  A different ensemble set would have even more omissions. If the criterion was to 
include in the ensemble only models that had all the designated variables, the ensemble 
would only contain two models. The current ensemble was a judgmental tradeoff of 
either maximizing the correlational constituency across the variables versus distorting the 
consistency (from not using the same ensemble of models) between historical and 
forecasted values. The balance tended toward maximizing correlational consistency 
across the variables because many impact analyses would include the simultaneous 
impact of many variables. All models in any-sub-ensemble set are again all treated 
equally and used without weighting any particular model differently. 

2.4. Geographical Resolution and Analysis Legitimacy

The highest resolution of the uncertainty data provided here is at the country level. For 
many countries, the local differences, for example between the Northeast and Southwest 
United States, are dramatic.  Some would argue that the downscaling is necessary for risk 
assessments.50  If the concern is over a small area, this may be true, but it is unclear that 
the historic relationships used for downscaling apply as climate change intensifies and it 
is unclear how they affect results in underestimation, exaggeration, or simply further 
biasing of the uncertainty characterization.51,52  The analysis here is meant to denote 

49 The error is also sometimes called the Standard Error of the Model and the Standard Error of the 
Regression.  
50 Auffhammer, M., Hsiang, S. M., Schlenker, W., & Sobel, A. (2013). Using weather data and climate 
model output in economic analyses of climate change. Review of Environmental Economics and Policy, 
7,181–198 (2013). doi: 10.1093/reep/ret016
51 Clark, Martyn P., Robert L. Wilby, Ethan D. Gutmann, Julie A. Vano, Subhrendu Gangopadhyay, 
Andrew W. Wood, Hayley J. Fowler, Christel Prudhomme, Jeffrey R. Arnold, and Levi D. Brekke. 
"Characterizing uncertainty of the hydrologic impacts of climate change." Current Climate Change Reports 
2, no. 2 (2016): 55-64.
52 Wibig, Joanna, et al. "Projected Change—Models and Methodology." Second Assessment of Climate 
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relative change and risk compared to the historical values. In this regard, the uncertainty 
quantification is useful, albeit not perfect, for ranking areas with potential for dangerous 
impacts, and thereby possibly justifying additional, higher-resolution assessments of 
localized impacts. On the other hand, the information is immediately usable for first order 
assessments of the climate impacts on interconnected nations. Waiting expectantly for 
accurate, high-resolution projections may produce results too late for security-mitigation 
measures or mask risk through overconfidence in the levels of certainty.

2.5. Country-based Specificity

Table 2 shows the countries (land) explicitly characterized in this analysis. Minor island 
nations such as Palau, autonomous regions such as Aland, and micro states such as San 
Mario, were not analyzed, primarily due to their limited size making a mapping from the 
GCM53 to climate uncertainty meaningless.  Figure 4 shows the world map containing 
only those areas.

2.6. Using an Ensemble of Opportunity

Because many of the climate models share common elements or algorithms, the data 
produced across the models are not truly independent. Further, the results from the varied 
models represent an ensemble of opportunity and not a statistically legitimate 
representation of climate uncertainty.  Nonetheless, the variation across models is the best 
proxy for actual climate-impact uncertainty currently available. The model results are 
used here without any de-biasing or skill weighting. That is, there is no attempt to reduce 
the uncertainty.  For risk purposes, the results from each climate model are considered as 
legitimate of a possibility as those from any other model. Because the models are not 
truly independent, the equal-weight, raw-output ensemble still likely underestimates the 
actual uncertainty. That said, it is still the best estimate of the uncertainty to use for risk 
assessments.54  Other efforts have utilized a single model with parameter variations and 
then incorporates downscaling, as an ensemble of runs to specify uncertainty.55, 56 Inter-
model uncertainty is greater than intra-model uncertainty. Therefore, from a risk 
perspective, the work here again adopts the ensemble of opportunity from CMIP5.

Afghanistan Costa Rica India Mozambique South Korea
Albania Cote d'Ivoire Indonesia Myanmar Spain

Change for the Baltic Sea Basin. Springer International Publishing, 2015. 189-215. 
http://link.springer.com/chapter/10.1007/978-3-319-16006-1_10 
http://climate4impact.eu/impactportal/help/howto.jsp 
53 GCM: General Circulation Models
54 Zubler, Elias M., et al. "Climate change signals of CMIP5 general circulation models over the Alps–
impact of model selection." International Journal of Climatology (2015).
55 Hadley Centre for Climate Prediction and Research (Exeter). ENSEMBLES: climate change and its 
impacts at seasonal, decadal and centennial timescales: summary of research and results from the 
ENSEMBLES project. Ed. Paul Van der Linden. Hadley Centre for Climate Prediction and Research, 2009. 
http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf   
56 Ghosh, Subimal, and P. P. Mujumdar. "Climate change impact assessment: Uncertainty modeling with 
imprecise probability." Journal of Geophysical Research: Atmospheres 114.D18 (2009).  

http://climate4impact.eu/impactportal/help/howto.jsp
http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf
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Algeria Croatia Iran Namibia Sri Lanka
Angola Cuba Iraq Nepal Sudan
Argentina Cyprus Ireland Netherlands Suriname
Armenia Czech Republic Israel New Zealand Svalbard
Australia Denmark Italy Nicaragua Swaziland
Austria Djibouti Jamaica Niger Sweden
Azerbaijan Dominican Republic Japan Nigeria Switzerland
Bahrain Ecuador Jordan North Korea Syria
Bangladesh Egypt Kazakhstan Norway Tajikistan
Belarus El Salvador Kenya Oman Tanzania
Belgium Equatorial Guinea Kuwait Pakistan Thailand
Belize Eritrea Kyrgyzstan Panama The Gambia
Benin Estonia Laos Papua New Guinea Timor-Leste
Bhutan Ethiopia Latvia Paraguay Togo
Bolivia Finland Lebanon Peru Tunisia
Bosnia & Herzegovina France Lesotho Philippines Turkey
Botswana French Guiana Liberia Poland Turkmenistan
Brazil Gabon Libya Portugal Uganda
Brunei Gaza Strip Liechtenstein Puerto Rico Ukraine
Bulgaria Georgia Lithuania Qatar United Arab Emirates
Burkina Faso Germany Luxembourg Romania United Kingdom
Burundi Ghana Macedonia Russia United States
Cambodia Greece Madagascar Rwanda Uruguay
Cameroon Greenland Malawi Saudi Arabia Uzbekistan
Canada Guatemala Malaysia Senegal Venezuela
Central African Rep. Guinea Mali Serbia Vietnam
Chad Guinea-Bissau Mauritania Sierra Leone West Bank
Chile Guyana Mexico Singapore Western Sahara
China Haiti Moldova Slovakia Yemen
Colombia Honduras Mongolia Slovenia Zambia
Congo Hungary Montenegro Somalia Zimbabwe
Congo DRC Iceland Morocco South Africa

Table 2: Countries with Uncertainty Distributions
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Figure 4: Map of Included Countries

2.7. Model-Bias and Delta-Change

None of the global climate models faithfully reproduce the historical data for all areas. 
Some are characteristically too low, too high, too fast, or too slow when compared to the 
actual dynamics. This difference is called a bias. Some models are consistently more 
skilled at reproducing observed results than other models. Many efforts have attempted to 
judge this skill level and to adjust the model to correct for the biases.57,58,59,60 Other 

57 https://climate4impact.eu/impactportal/general/index.jsp?q=bias_correction 
58Sanderson, Benjamin M., Reto Knutti, and Peter Caldwell. "Addressing interdependency in a multimodel 
ensemble by interpolation of model properties." Journal of Climate 28.13 (2015): 5150-5170.  
59 Teutschbein, Claudia, and Jan Seibert. "Bias correction of regional climate model simulations for 
hydrological climate-change impact studies: Review and evaluation of different methods." Journal of 
Hydrology 456 (2012): 12-29. 
https://www.researchgate.net/profile/Jan_Seibert/publication/256756594_Bias_correction_of_regional_cli
mate_model_simulations_for_hydrological_climate-
change_impact_studies_Review_and_evaluation_of_different_methods/links/02e7e523f6473149d1000000.
pdf    
60 Auffhammer, M., Hsiang, S. M., Schlenker, W., & Sobel, A. (2013). Using weather data and climate 
model output in economic analyses of climate change. Review of Environmental Economics and Policy, 
7,181–198 (2013). doi: 10.1093/reep/ret016

https://climate4impact.eu/impactportal/general/index.jsp?q=bias_correction
https://www.researchgate.net/profile/Jan_Seibert/publication/256756594_Bias_correction_of_regional_climate_model_simulations_for_hydrological_climate-change_impact_studies_Review_and_evaluation_of_different_methods/links/02e7e523f6473149d1000000.pdf
https://www.researchgate.net/profile/Jan_Seibert/publication/256756594_Bias_correction_of_regional_climate_model_simulations_for_hydrological_climate-change_impact_studies_Review_and_evaluation_of_different_methods/links/02e7e523f6473149d1000000.pdf
https://www.researchgate.net/profile/Jan_Seibert/publication/256756594_Bias_correction_of_regional_climate_model_simulations_for_hydrological_climate-change_impact_studies_Review_and_evaluation_of_different_methods/links/02e7e523f6473149d1000000.pdf
https://www.researchgate.net/profile/Jan_Seibert/publication/256756594_Bias_correction_of_regional_climate_model_simulations_for_hydrological_climate-change_impact_studies_Review_and_evaluation_of_different_methods/links/02e7e523f6473149d1000000.pdf
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studies note the problems with attempting bias corrections.61,62  Several studies argue that 
the delta-change approach is the best and most robust means to consistently apply climate 
data for impact analysis.63,64,65 The delta-change approach simply notes the relative 
difference between what the model produced in its historical runs to what it produced in 
its forecast. That additive or multiplicative delta is then referenced to or compared to the 
observed historical value of interest. As such, all uncertainty estimates used here should 
be used as a delta-change to the average.  For analysis, the average-over-time is 
referenced to the historical average over the period or an interpolated value calculated for 
a specific year.66 The interpolation can smoothly connect the forecasted value to the 
historical value along the boundary across the historical year 2005 and the (model) 
forecast year 2006.  There is no reason to believe the answer is correct, but it is adequate 
for applying the relative change over the years to impacts on, for example, water 
availability and relative temperature impacts.  For instance, if the delta change for a 
particular variable in 2050 is 10% higher, then the value in 2050 is 10% higher than its 
historical average value, independent of what the specific historical value actually was. 
Because economic and impact models are naturally referenced (implicitly or explicitly) to 
a “normal” weather (climatic) condition, the use of the delta change is a generically 
consistent means to represent the altered condition.

2.8. Temporal Specificity and Correlated Sampling

The uncertainty distributions are calculated by month. Within any model run, the climate 
conditions in each month are not independent from the climate in the months that precede 
it. At an aggregate level, the ensemble captures the average annual aspects of that 
correlation. However, the purpose here is to emphasize the uncertainty, and using a single 
seed for sampling the entire year would underestimate the actual variability.  Therefore, it 
is more valid to start each month as independent for sampling purposes (again noting that 
the distribution is already shifted to correspond to that particular month and its 
relationship to the months around it). Similarly, other variables are correlated, such as 
temperature and precipitation. By using the same models for estimating the uncertainty 
across variables, the correlations (as an average, across models) are to some extent 
captured.

61 Ehret, U., et al. "HESS Opinions" Should we apply bias correction to global and regional climate model 
data?"." Hydrology and Earth System Sciences 16.9 (2012): 3391-3404. http://www.hydrol-earth-syst-
sci.net/16/3391/2012/hess-16-3391-2012.pdf 
62 Tebaldi, C., & Sansó, B. (2009). Joint projections of temperature and precipitation change from multiple 
climate models: a hierarchical Bayesian approach. Journal of the Royal Statistical Society: Series A 
(Statistics in Society), 172(1), 83-106.
63 Hawkins, E, Osborne, TM, Ho, CK and Challinor, AJ (2013) Calibration and bias correction of climate 
projections for crop modelling: An idealised case study over Europe. Agricultural and Forest Meteorology, 
170. 19 - 31. http://eprints.whiterose.ac.uk/77973/10/challinor14.pdf  
64 Ibid., Auffhammer et al., 2013
65 Ibid., Teutschbein and Seibert 2012. 
66 All “data” are the output from the models and not the physically observed quantities. The comparison is 
between the simulated historical values and the simulated forecasted values.  That is, the risk assessments 
would be based on the simulated/forecast change in climate compared to the simulated/historical climate.

http://www.hydrol-earth-syst-sci.net/16/3391/2012/hess-16-3391-2012.pdf
http://www.hydrol-earth-syst-sci.net/16/3391/2012/hess-16-3391-2012.pdf
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Given the monthly resolution and the limitation of using any ensemble, the independent 
sampling for each month is therefore justified. It could be hot and dry one day with a 
downpour the next day, while the mapping can and needs only to be representative of the 
monthly interval. In a similar vein, even though runoff may continue for many days after 
a major precipitation event, in terms of monthly values and assessing impacts, they are 
simultaneous.  There are sophisticated methods to deal with joint probability distributions 
and model skill, mostly in regard to adaptation planning.67,68  These methods reduce the 
uncertainly measures for the best estimates, but do not increase confidence in the 
uncertainty itself. 

There is an alternative sampling logic to employ when two variables are strongly 
correlated, such as soil moisture and evaporation, and that is to sample related 
precipitation data using a single seed. For example, if there is a random draw of a 76% 
exceedance probability, use that exceedance value for selecting all the precipitation 
related values.  Use an identical approach for variables highly correlated to the average 
temperature, such as the minimum and maximum temperatures. While sampling each 
variable independently probably implies excessive uncertainty, and maybe risk, a fully 
correlated relationship likely underestimates the risk. 

There is also a correlation across regions. Sampling on a single region can cause 
“remote” bias relative to another region.69  Remote bias occurs when two or more 
geographically regions are tightly coupled climatically, usually due to ocean currents. 
Independent sampling of each misses the correlation, while joint sampling largely reflects 
any biases (deviations from actual observation) artificially generated by the model 
algorithms.  The use of a standard ensemble set and delta-changes mitigates this bias.70  
Therefore, if there is a joint assessment across multiple countries, it is not unreasonable to 
use the same seed for sampling the variable values across all the areas. Although 
legitimate for many types of analyses, using independent sampling across the areas, 
especially connected areas, again, likely underestimates joint risks.   The use of varied 
correlational relationships is discussed later in section 3.1.

Additionally, there is a bias across times scales - from the day-to-month issues noted 
above to corresponding year-to-decade ones. The need for sophisticated temporal 
correction to the bias depends on the time constants for the phenomena of concern. For 
example, to model the progression of a flood, very detailed (minute or hourly) temporal 
corrections are needed.71  For determining economic, societal or security risks, the single 
monthly resolution captured via delta changes is appropriate.

67 Sanderson, Benjamin M., Reto Knutti, and Peter Caldwell. "Addressing interdependency in a multimodel 
ensemble by interpolation of model properties." Journal of Climate 28.13 (2015): 5150-5170.
68 Ibid., Tebaldi, C., & Sansó, B. (2009). 
69 Wang, Chunzai, et al. "A global perspective on CMIP5 climate model biases." Nature Climate Change 
4.3 (2014): 201-205.  
70 Ibid., Wang, Chunzai, et al.(2014)
71 Haerter, J. O., et al. "Climate model bias correction and the role of timescales." Hydrology and Earth 
System Sciences 15.3 (2011): 1065-1079.  http://www.hydrol-earth-syst-sci.net/15/1065/2011/hess-15-
1065-2011.pdf 

http://www.hydrol-earth-syst-sci.net/15/1065/2011/hess-15-1065-2011.pdf
http://www.hydrol-earth-syst-sci.net/15/1065/2011/hess-15-1065-2011.pdf
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2.9. Uncertainty of the Uncertainty

Independent of the type of probability distribution estimated, the estimated uncertainty in 
the probability (called second-order probability) is calculated as a Gaussian distribution.  
Although the mathematical details are not presented here, this uncertainty of the 
uncertainty is estimated and noted in the appendices. Analyses can use this second-order 
uncertainty as a proxy to correct for what is not known about the estimated climate (first 
order) uncertainty. Incorporating second order uncertainty in a risk assessment requires a 
more intense effort than using the first order uncertainty.  In general, risk assessments 
would only use first-order uncertainty.  Because the estimate of the second-order 
uncertainty assumes a Gaussian shape, it will have no impact on the risk calculation for 
consequences that change linearly with changes in climatic conditions.  For impacts that 
non-linearly increase with the deviation in conditions from the historical norm, the 
impacts on risks would be larger with the inclusion of second-order uncertainty.72 

Figure 5 shows the second-order uncertainty in terms of confidence intervals on a 
Gamma distribution for US precipitation from a previous study.73 The blue line is the 
ranked climate model data. The solid red line is the fit to the data and the dashed lines 
enclose the confidence interval. A confidence interval is the +/- 95% confidence 

boundary. It is 1.96 times the standard error of the estimate. 

Figure 5: Estimated Second-Order Uncertainty

72 Backus, George, et al. "Climate Uncertainty and Implications for US State-Level Risk Assessment 
Through 2050." SAND Report 7001 (2009). Sandia National Laboratories, Albuquerque, NM, page 55. 
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf 
73 Ibid. Backus et al. 2009

http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf
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Figure 6 shows a conceptualization of second-order uncertainty for the extreme case of a 
Beta distribution.  The blue dots represent data points. The solid black curve would be the 
estimate of the CDF. The dashed gray lines would be the confidence intervals 
characterizing the uncertainty. Because the uncertainty of the uncertainty is estimated as 
a normal distribution, the distribution extends beyond the confidence interval boundary. 
The green horizontal line conceptually shows the width of the confidence band, as 
opposed to the width being a vertical line.  The reported standard error in the appendices 
is simply equal to the standard deviation of this second-order-uncertainty distribution, as 
centered on the mean of the first-order uncertainty probability’s CDF. 

Figure 6: Illustrative Second-Order Uncertainty

With the focus on the CDF, it is implicitly assumed that risk analyses would be based on 
Latin-Hypercube Sampling74 to obtain variable values for impact calculations.  Because 
the second-order uncertainty is a probability density function, Latin-Hypercube Sampling75,

76 is still effective.  

74 McKay, Michael D., Richard J. Beckman, and William J. Conover. "A comparison of three methods for 
selecting values of input variables in the analysis of output from a computer code." Technometrics 42.1 
(2000): 55-61.
75 Florian, Aleš. "An efficient sampling scheme: updated Latin Hypercube Sampling." Probabilistic 
engineering mechanics 7.2 (1992): 123-130.
76 Helton, Jon C., and Freddie Joe Davis. "Latin hypercube sampling and the propagation of uncertainty in 
analyses of complex systems." Reliability Engineering & System Safety 81.1 (2003): 23-69.
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For distributions bound by 0.0, such as a Gamma distribution, or those bound on both 
sides, like the Beta distribution, there is the issue of how to represent the standard error at 
the boundary edge.  It is not reasonable to have fractional ice coverage be less than zero 
or greater than 100%.  A consistent and conservative approach is to add the error band, 
but discard any values that produce unrealizable conditions. This situation is shown in 
Figure 6. For a Gaussian CDF, the confidence interval can be applied unaltered over the 
entire range. While the truncation approach would seem to exaggerate the error as the 
estimated probability approaches zero, any other choice would assume information that is 
unavailable.77 Therefore, until other information falsifies the risk, the risk remains. This 
truncation approach likely overestimates the error, as derived from available data, but 
because the ensemble itself likely underestimates the uncertainty, the results may be as 
realistic as any other. The approach does make the sampling easy and the applied 
uncertainty transparent. 

The estimate of the second-order uncertainty (standard error of the CDF estimate) uses 
the conventional calculation of the standard error rather than using bootstrapping. As a 
minor point, compiling the current data was already computationally intensive and adding 
bootstrapping would have made the task non-viable. But more importantly, bootstrapping 
would likely show increased uncertainty at the tails over the conventional estimate 
provided herein. Although this greater uncertainty may be justified, the conventional 
representation of uncertainty would still likely lead to disconcerting consequences at tail 
conditions. Although the output “data” from the model are being used as representative 
data points, they are simply model output from an ensemble-of-opportunity, and treating 
them the same as typical observation data, as used in bootstrapping estimates of 
uncertainty, may be a formal attempt to add more credibility than is warranted.

Second-order uncertainty exists for both the historical and future periods.  To maintain 
consistency when sampling both periods, it is preferred to use the same exceedance 
probability for the second-order uncertainty, for both periods.  If the historical period is 
deemed fixed at its mean value, then applying second-order uncertainty in future 
assessments can be insightful -- as long as it is recognized that the low probability 
conditions may be more a result of the models’ historical-calibration limitations than just 
forecast variance across the models. Again, in general, risk assessments would only use 
the, much-simpler-to-apply, first-order climate uncertainty.  Note that analyses could 
additionally include uncertainty in the actual impacts, as determined in the impact 
models, as opposed to just including uncertainty in the climate variables.

77 Another possibility could be resampling and bootstrapping, but even here, the correlations across the 
variables and within the ensemble could become distorted. It is unclear what trade-off is being made. It is 
unresolved that the results of this manipulation are more legitimate or less legitimate than just accepting the 
calculated standard error as the useful error metric.   
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3. RISK ASSESSMENT VARIABLES

Table 3 below shows the variables included in the analysis.  These were selected to 
provide a minimalist set that was tractable and still enabled socioeconomic and security 
risk assessments. The data were converted to the dimensionality noted in the table, to be 
more compatible with impact models. Note that the estimated, uncertainty distributions 
generate a mean that is the average value of that variable, for the representative month, in 
the geographical area of interest, over the time period in question, such as a decadal 
interval.
 
For variables with small variations, the uncertainty is represented as a normal 
distribution.78 The use of other distributions are noted in the table for variables whose 
uncertainty characteristics are generally accepted to have the features of that distribution.  
Note that, in general, the distribution describing the physically observed variance of a 
variable is not necessarily the distribution describing the uncertainty in the knowledge of 
that variable’s value from the variation across the climate simulation models. 
Nonetheless, because any risk assessment is sampling the climate variable to calculate the 
impact from the weather (or other condition) it implies, the distribution used here often 
does correspond to its observed distribution.  Each variable is discussed below, in turn.

3.1. Country-based Variables 

For country risks, this analysis estimated the uncertainty distribution for the  first nine 
variables of Table 3.  Near-Surface Air Temperature is the monthly average and would 
impact agriculture, energy, human, disease, and economic activity. For example, the 
average temperature affects agricultural productivity and power plant efficiency.  
Maximum Temperature has impacts on agriculture, energy, humans, and economic 
activity.  For example, high temperatures dramatically harm crops and reduce human 
labor-productivity.  Minimum Temperature has impacts on disease and energy. For 
example, higher minimum seasonal temperatures reduce heating needs and allow the 
migration of diseases to new area.  Precipitation has an impact on agriculture, water, 
diseases, energy, humans, and economic activity.  Droughts and floods both come with 
severe consequences. Evaporation primarily impacts water supplies and can be used as a 
proxy for evaluating increased water loss from the surface of reservoirs. Relative 
Humidity has impacts on agriculture, humans, and energy. For example, the humidity 
affects human productivity and reduces cooling efficiency for energy needs. Moisture in 
Upper Portion of Soil Column is often used for impacts on agricultural productivity.  

78 Stocker,  T.F.,  D.  Qin,  G.-K.  Plattner,  L.V.  Alexander,  S.K.  Allen,  N.L.  Bindoff,  F.-M.  Bréon,  
J.A.  Church,  U.  Cubasch,  S. Emori, P. Forster, P. Friedlingstein, N. Gillett, J.M. Gregory, D.L. 
Hartmann, E. Jansen, B. Kirtman, R. Knutti, K. Krishna Kumar, P. Lemke, J. Marotzke, V. Masson-
Delmotte, G.A. Meehl, I.I. Mokhov, S. Piao, V. Ramaswamy, D.Randall, M. Rhein, M. Rojas, C. Sabine, 
D. Shindell, L.D. Talley, D.G. Vaughan and S.-P. Xie, 2013: Technical Summary. In: Climate Change 
2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, 
J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA. 
http://www.climatechange2013.org/images/report/WG1AR5_TS_FINAL.pdf 

http://www.climatechange2013.org/images/report/WG1AR5_TS_FINAL.pdf
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Surface Runoff has impacts on agriculture, water, and economic activity. The runoff 
values can be used as a proxy to scale historical flooding frequency and intensity to the 
potential for increased future flooding and intensity. The Maximum Near-Surface Wind 
Speed primarily has economic impacts.  This variable can be used as a proxy to compare 
historical wind-damage frequency and intensity with the potential for increased future 
damage. 

Each variable in Table 3 is discussed more fully below.
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Variable Name Dataset Timestep Description Native Unit Converted Unit Distribution
tas mo Near-Surface Air Temp K K Normal
tasmax mo Maximum Near-Surface Air Temp K K Normal
tasmin mo Minimum Near-Surface Air Temp K K Normal
pr mo Precipitation kg/m2/s m/da Gamma
evspsbl mo Evaporation kg/m2/s m/da Normal
rhs mo Near-Surface Relative Humidity % % (monthly mean) Normal
mrros mo Surface Runoff kg/m2/s m3/da Gamma
mrsos mo Moisture in Upper Soil Column kg/m2 in upper 0.1 m m3/m3 Normal
sfcWindmax mo Maximum Near-Surface Wind Speed m/s m/da Weibull
sic mo Sea Ice Area Fraction % m2/m2 Beta
sit mo Sea Ice Thickness m M Gamma
ageice mo Age of Sea Ice yr da Gamma
ridgice mo Sea Ice Ridging Rate 1/s (m2/da)/m2 Gumbel

Table 3: CMIP5 Variables Having Uncertainty-Distribution Estimates
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1. Near-Surface Air Temperature (CMIP5 short variable name: tas) is the mean 
(average) temperature measured in degrees kelvin (K), is sampled synoptically, and 
is normally, reported at 2 meters above the surface.79 The values, as they are for all 
the variables, are for the average over the month, for that month, and over the time 
period of interest, for example 2016-2025, for the country of interest. Temperature 
variation, which in this case is its uncertainty, is conventionally described with a 
normal distribution.80 

79 All of the formal variable definitions come from: http://cmip-
pcmdi.llnl.gov/cmip5/docs/standard_output.pdf    
80 Stocker,  T.F.,  D.  Qin,  G.-K.  Plattner,  L.V.  Alexander,  S.K.  Allen,  N.L.  Bindoff,  F.-M.  Bréon,  
J.A.  Church,  U.  Cubasch,  S. Emori, P. Forster, P. Friedlingstein, N. Gillett, J.M. Gregory, D.L. 
Hartmann, E. Jansen, B. Kirtman, R. Knutti, K. Krishna Kumar, P. Lemke, J. Marotzke, V. Masson-
Delmotte, G.A. Meehl, I.I. Mokhov, S. Piao, V. Ramaswamy, D.Randall, M. Rhein, M. Rojas, C. Sabine, 
D. Shindell, L.D. Talley, D.G. Vaughan and S.-P. Xie, 2013: Technical Summary. In: Climate Change 
2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, 
J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA. 
http://www.climatechange2013.org/images/report/WG1AR5_TS_FINAL.pdf 

http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
http://www.climatechange2013.org/images/report/WG1AR5_TS_FINAL.pdf
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2. Maximum Near-Surface Air Temperature (CMIP5 short variable name: tasmax) is 
measured, analyzed, and reported identically to that for the mean temperature 
above.  To be statistically appropriate for the work here, it is the average over the 
month. 

3. Minimum Near-Surface Air Temperature (CMIP5 short variable name: tasmin) is 
measured, analyzed, and reported identically to that for the mean temperature 
above. To be statistically appropriate for the work here, it is the average over the 
month.

4. Precipitation (CMIP5 variable: pr) is measured at the surface and includes both 
liquid and solid phases. The gamma distribution is widely used to represent 
precipitation variability and thus used here for uncertainty.81

5. Evaporation (CMIP5 variable: evspsbl) is the dissipation of water into the 
atmosphere due to conversion of both liquid and solid phases to vapor (from the 
underlying surface and vegetation).  Although it is affected by a combination of 
physical phenomena, the net effects are its uncertainty, which is described with a 
normal distribution. 

6. Near-Surface Relative Humidity (CMIP5 variable: rhs)  is the relative humidity, in 
%, with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. It is 
normally reported at 2 meters above the surface. Like evaporation, its uncertainty is 
described with a normal distribution. 

7. Surface Runoff (CMIP5 variable: mrros) is the total surface runoff leaving the land 
portion of the modeled grid cell, or in this case, the country. The gamma 
distribution is also widely used to represent runoff variability and thus used here 
for uncertainty.82

8. Moisture in Upper Portion of Soil Column (CMIP5 variable: mrsos) is the mass of 
water in all phases in a thin surface soil layer, integrated over the uppermost 10 cm.  
This variable is closely linked to precipitation and runoff and is therefore described 
by a gamma distribution.

9. Maximum Near-Surface Wind Speed (CMIP5 variable: sfcWindmax) is normally 
reported at 10 meters above the surface. The Weibull distribution is widely used to 
represent wind variability and thus used here for uncertainty.83 To be statistically 
appropriate for the work here, it is the average over the month.

81 Gottschalk, Lars, and Rolf Weingartner. "Distribution of peak flow derived from a distribution of rainfall 
volume and runoff coefficient, and a unit hydrograph." Journal of hydrology 208.3 (1998): 148-162. 
https://www.researchgate.net/profile/Lars_Gottschalk/publication/223020819_Distribution_of_Peak_Flow
_Derived_From_a_Distribution_of_Rainfall_Volume_and_Runoff_Coefficient_and_a_Unit_Hydrograph/li
nks/0a85e531f0642da0c8000000.pdf 
82 Ibid. Gottschalk and Weingartner 1998 
83 Caretto, L. "Use of probability distribution functions for wind." Mechanical Engineering 483 (2010). 

https://www.researchgate.net/profile/Lars_Gottschalk/publication/223020819_Distribution_of_Peak_Flow_Derived_From_a_Distribution_of_Rainfall_Volume_and_Runoff_Coefficient_and_a_Unit_Hydrograph/links/0a85e531f0642da0c8000000.pdf
https://www.researchgate.net/profile/Lars_Gottschalk/publication/223020819_Distribution_of_Peak_Flow_Derived_From_a_Distribution_of_Rainfall_Volume_and_Runoff_Coefficient_and_a_Unit_Hydrograph/links/0a85e531f0642da0c8000000.pdf
https://www.researchgate.net/profile/Lars_Gottschalk/publication/223020819_Distribution_of_Peak_Flow_Derived_From_a_Distribution_of_Rainfall_Volume_and_Runoff_Coefficient_and_a_Unit_Hydrograph/links/0a85e531f0642da0c8000000.pdf


34

As noted earlier, all the temperature variables are well-correlated. Therefore, it may be 
appropriate to only use one random seed to sample all three distributions for an impact 
assessment. Because the actual correlation cannot be adequately quantified with available 
information, there is no justification for conditional sampling.  Independent sampling is 
another option, but if the impact assessment is sensitive to all the temperature variations, 
the impacts could be dramatically overstated.  A useful exercise could be to arbitrarily 
select various levels of correlation and run conditional-probability analyses to determine 
the sensitivity of the impacts or overall risk to the degree of correlation across variables.  
If the sensitivity produces unacceptable consequences for reasonably possible levels of 
correlation (or lack thereof), it could then be justified to devote research to more 
accurately determine the degree of correlation.

The same is true for the precipitation related variables of runoff and soil moisture. 
Although evaporation is jointly correlated with temperature and precipitation, an earlier 
discussion noted that at the monthly temporal resolution, they are best treated as 
independent. Further, biomass ground-cover also disconnects the evaporation from any 
simple temperature and precipitation relationship. Note that plant evapotranspiration is 
distinctly separate from the physical evaporation reported here.

www.csun.edu/~lcaretto/me483/probability.doc 

http://www.csun.edu/~lcaretto/me483/probability.doc
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3.2. Arctic Variables and Spatial Resolution

For analysis, the Arctic region was divided into 15° longitude segments extending from 
66.5° through 80° latitude segments. The pole area is divided into two semicircles 
extending from 80° to 90°, split along the 0° and 180° longitude line. There are 
uncertainty distributions for each area segment for the last four variables in Table 3.  
Figures 7 and 8 show this Arctic geometry for the eastern and western hemispheres.  
Figure 9 shows the combined country (land) and Arctic areas included in this report. 

Figure 7: Eastern Arctic Areas

The Arctic data includes Sea Ice Area Fraction (the % of water covered by ice in a 
region), the Sea Ice Thickness (meters), Ice Ridging Rate (% of ice undergoing ridging 
per month), and the Age of the Ice (years).  Note that Arctic data are very limited, 
sometimes to the extreme of having the data from only two or three climate models.  In 
these situations, the purpose here is to show the process and to express the need for and 
implications of variable uncertainty. For these Arctic variables, the limited data are still 
useful for preliminary assessments and testing. 

The analysis conceptualization original included the permafrost layer thickness (CMIP5 
variable: tpf) for determining impacts on Arctic infrastructure development, but the data 
does not appear to be available for the Table 1 models within the ESGF portal. Other 
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studies have considered the change in permafrost84,85,86 primarily using proxies, but that 
work is beyond scope of this analysis and would not contain adequate information to 
produce uncertainty estimates comparable to those for the other variables.

Figure 8: Western Arctic Areas

The Arctic variables are meant to be proxies, useful for understanding the risks of or from 
activities in the Arctic. Reduced ice in the Arctic corresponds to reduced hurdles to 
economic development or Arctic access, be it oil/gas production, shipping, mining, 
infrastructure development, or defense/homeland-security facilities. These variables are 
proxies because, for example, the ice thickness only partially indicates the need for 
icebreakers or the risk of using a vessel without ice reinforcement.  Additionally, this 
proxy is partial because the values represent an average value of the ice thickness which 
corresponds to an implicit, unrealistic statement that the ice has one homogenous 
thickness over the entire region.  In combination with the non-orthogonal ice-ridging, it is 
possible to obtain a more complete, but still partial, understanding of risk.

84 Slater, Andrew G., and David M. Lawrence. "Diagnosing present and future permafrost from climate 
models." Journal of Climate 26.15 (2013): 5608-5623.
85 Koven, Charles D., William J. Riley, and Alex Stern. "Analysis of permafrost thermal dynamics and 
response to climate change in the CMIP5 Earth System Models." Journal of Climate 26.6 (2013): 1877-
1900.
86 Guo, Donglin, and Huijun Wang. "CMIP5 permafrost degradation projection: A comparison among 
different regions." Journal of Geophysical Research: Atmospheres 121.9 (2016): 4499-4517.
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Each of the Arctic variables are discussed below.

Figure 9: Combined Map of Country and Arctic Areas

1. The Sea Ice Area Fraction is the percentage fraction of grid cell covered by sea 
ice, often called the “extent.” In the CMIP5 dataset, this variable is designated as 
“sic.”  Because it necessarily varies between zero and one, the Beta distribution is 
used to define the uncertainty of the Sea Ice Fraction.

2. Sea Ice Thickness is the mean thickness of sea ice in the ocean portion of the grid 
cell (averaging over the entire ocean portion, including the ice-free fraction). It is 
reported as 0.0 in regions free of sea ice. In the CMIP5 dataset, this variable is 
designated as “sit.” With an inadequate number of models available to explore 
inter-model uncertainty, the use of intra-model uncertainty still does not clearly 
support either Weibull or a Lognormal distribution, and therefore the more 
flexible Gamma distribution appears to be best current choice87,88  for both the 
age-of-ice and the thickness.

87 Mårtensson, Sebastian, et al. "Ridged sea ice characteristics in the Arctic from a coupled multicategory 
sea ice model." Journal of Geophysical Research: Oceans 117.C8 (2012).  
88 Stroeve, J. C., and A. P. Barrett. "Assessment of Arctic Sea Ice in the CMIP5 Climate Models." AGU 
Fall Meeting. Vol. 1. 2011. 
http://www.cesm.ucar.edu/working_groups/Polar/presentations/2012/stroeve.pdf 

http://www.cesm.ucar.edu/working_groups/Polar/presentations/2012/stroeve.pdf
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3. The Sea Ice Ridging Rate is defined as the percentage of the ice area participating 
in ridging per unit of time. The proper interpretation of the ridging rate depends 
on how the information will be used.89  When computing the mean over a time 
period, the time-specific samples, weighted by the area of sea ice, are 
accumulated and then divided by the sum of the weights.90 The ridging rate is 
reported as "missing" or 0.0 in regions free of sea ice.  In the CMIP5 dataset, this 
variable is designated as “ridgice.” The ridging rate can be transformed into a 
proxy for relative ridging thickness.91  Because the data indicate negative as well 
as positive ridging rates, a Gumbel distribution is used to describe the uncertainty 
rather than the Gamma distribution. 

4. Age of Sea Ice measures the average of age of sea ice, for the noted area. When 
computing the mean over the time period, the time-specific samples, weighted by 
the mass of sea ice in the grid cell, are accumulated and then divided by the sum 
of the weights.92 The age is reported as "missing" or 0.0 in regions free of sea ice. 
In the CMIP5 dataset, this variable is designated as “ageice.” As discussed above, 
a Gamma distribution is used to describe its uncertainty. 

In general, for Arctic variables, the CMIP5 analyses produce more realistic results than 
those of CMIP3. Nonetheless, they still show excessive seasonal changes and the spatial 
thickness is not well-produced.93 The models also tend to make the ice too thin, affecting 
estimates of all these interdependent variables.94 The use of the delta-change approach 
still allows a first-order evaluation of sea ice conditions over time for risk assessment 
purposes.95

There is no justification, via the data alone, for any correlated relationship among any of 
the Arctic variables. Therefore, all these variables should be treated as independent. 
There is certainly a causal relationship between ridging rates and ice thickness.  As the 
ice thickness declines the potential for ridging increases, depending on temperature, 
currents and wind/wave conditions, but the relationship is non-linear because both zero 
ice-thickness and extreme thickness imply no ridging.  Further, each Arctic area has a 
large geographical extent, and average thickness is not representative of local thickness. 
Consequently, treating thickness and ridging as independent best captures the lack of 
information (and data) regarding both processes. 

89 Shoutilin, Sergey V., et al. "Dynamic-thermodynamic sea ice model: ridging and its application to 
climate study and navigation." Journal of climate 18.18 (2005): 3840-3855.  
90 This formal variable definition comes from: http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf      
91 Lipscomb, William H., et al. "Ridging, strength, and stability in high‐resolution sea ice models." Journal 
of Geophysical Research: Oceans 112.C3 (2007).
92 This formal variable definition comes from: http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf      
93 Stroeve, J. C., and A. P. Barrett. "Assessment of Arctic Sea Ice in the CMIP5 Climate Models." AGU 
Fall Meeting. Vol. 1. 2011. 
http://www.cesm.ucar.edu/working_groups/Polar/presentations/2012/stroeve.pdf   
94 Shu, Qi, Zhenya Song, and Fangli Qiao. "Assessment of sea ice simulations in the CMIP5 models." The 
Cryosphere 9.1 (2015): 399-409
95 Ibid.

http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf
http://www.cesm.ucar.edu/working_groups/Polar/presentations/2012/stroeve.pdf
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4. CMIP5 DATA AVAILABILITY

All data was extracted from the models noted in Table 1. This set appeared to produce the 
most uniformity of output variables across the variable set.  Tables 4 and 5 show which 
models provide what data for each of the country (land) variables for the historical and 
RCP8.5 experiments. Table 6 shows the data used for the Arctic uncertainty estimates. 
Blocks in green note the used data.  Blocks in red note that the data are either not 
available or could not be located on the ESGF portal96 at the time of this analysis. Orange 
notes that only partial data were available, typically only for a subset number of years. To 
maintain consistency across years, these data were not used in the analysis.

Model/Variable tas/mo tasmax/mo tasmin/mo pr/mo evspsbl/mo
Experiment h 8.5 h 8.5 h 8.5 h 8.5 h 8.5
Access1.0 h 8.5 h 8.5   h 8.5 h 8.5
Access1.3 h 8.5 h 8.5   h 8.5 h 8.5

BCC-CSM1.1 h 8.5 h 8.5   h 8.5 h 8.5
BNU-ESM h 8.5 h 8.5   h 8.5 h 8.5
CanESM2 h 8.5 h 8.5   h 8.5 h 8.5

CCSM4 h 8.5 h 8.5   h 8.5 h 8.5
CESM-CAM5.1 h 8.5 h 8.5   h 8.5 h 8.5

CNRM-CM5 h 8.5 h 8.5 h 8.5 h 8.5 h 8.5
CSIRO-Mk3.6 h 8.5 h 8.5   h 8.5 h 8.5

GFDL-CM3 h 8.5 h 8.5 h 8.5 h 8.5 h 8.5
GFDL-ESM2M h 8.5 h 8.5 h 8.5 h 8.5 h 8.5

GISS-E2-H h 8.5 h 8.5 h 8.5 h 8.5 h 8.5
HadGEM2-CC h 8.5 h 8.5 h 8.5 h 8.5 h 8.5

IPSL-CM5A-MR h 8.5 h 8.5 h 8.5 h 8.5 h 8.5
IPSL-CM5A-LR h 8.5 h 8.5 h 8.5 h 8.5 h 8.5
MIROC-ESM h 8.5 h 8.5 h 8.5 h 8.5 h 8.5

MIROC5 h 8.5 h 8.5 h 8.5 h 8.5 h 8.5
MPI-ESM-LR h 8.5 h 8.5 h 8.5 h 8.5 h 8.5

MRI-CGCMC3 h 8.5 h 8.5 h  h 8.5 h 8.5
MRI-ESM1 h 8.5 h 8.5 h 8.5 h 8.5 h 8.5

NorESM1-M h 8.5 h 8.5 h 8.5 h 8.5 h 8.5
NorESM1-ME h 8.5     h 8.5 h 8.5

 Data not available or not found
 File was downloaded and processed

 File was downloaded but data are inadequate 
Table 4: Land Variables and Data Availability

96 Earth System Grid Federation (ESGF) June to September 2015 http://esgf.llnl.gov/ 

http://esgf.llnl.gov/
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Model/Variable rhs/day mrsos/mo mrros/mo sfcWindmax/day
Experiment h 8.5 h 8.5 h 8.5 h 8.5
Access1.0   h 8.5 h 8.5   
Access1.3   h 8.5 h 8.5 h  

BCC-CSM1.1   h 8.5  8.5   
BNU-ESM   h 8.5  8.5 h 8.5
CanESM2   h 8.5 h 8.5 h  

CCSM4     h    
CESM-CAM5.1         

CNRM-CM5   h 8.5 h 8.5 h  
CSIRO-Mk3.6     h  h 8.5

GFDL-CM3 h 8.5     h 8.5
GFDL-ESM2M h 8.5     h 8.5

GISS-E2-H   h 8.5 h 8.5   
HadGEM2-CC  8.5 h 8.5   h 8.5

IPSL-CM5A-MR  8.5 h 8.5 h 8.5   
IPSL-CM5A-LR h 8.5 h 8.5 h 8.5 h 8.5
MIROC-ESM  8.5 h 8.5 h 8.5  8.5

MIROC5 h 8.5 h 8.5 h 8.5 h 8.5
MPI-ESM-LR     h 8.5 h 8.5

MRI-CGCMC3 h 8.5 h 8.5 h 8.5 h 8.5
MRI-ESM1  8.5 h 8.5 h 8.5   

NorESM1-M h 8.5 h 8.5 h 8.5   
NorESM1-ME   h 8.5 h 8.5   

 Data not available or not found
 File was downloaded and processed

 File was downloaded but data are inadequate 

Table 5: Land Variables and Data Availability (continued)
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Model/Variable sic/mo sit/mo ageice/mo ridgice/mo
Experiment H 8.5 h 8.5 h 8.5 h 8.5
Access1.0         
Access1.3         

BCC-CSM1.1         
BNU-ESM         
CanESM2         

CCSM4         
CESM-CAM5.1         

CNRM-CM5 H 8.5 h 8.5 h 8.5   
CSIRO-Mk3.6         

GFDL-CM3 H 8.5 h 8.5     
GFDL-ESM2M H 8.5  8.5     

GISS-E2-H H 8.5 h 8.5     
HadGEM2-CC H 8.5 h 8.5     

IPSL-CM5A-MR H 8.5 h 8.5     
IPSL-CM5A-LR H 8.5 h 8.5     
MIROC-ESM H 8.5 h 8.5     

MIROC5 H 8.5 h 8.5     
MPI-ESM-LR H 8.5 h 8.5     

MRI-CGCMC3  8.5  8.5   h 8.5
MRI-ESM1 H 8.5 h 8.5   h 8.5

NorESM1-M H 8.5 h 8.5 h 8.5   
NorESM1-ME H 8.5 h 8.5 h 8.5   

 Data not available or not found
 File was downloaded and processed

 File was downloaded but data are inadequate 

Table 6: Arctic Variables and Data Availability
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5. UNCERTAINTY ESTIMATION

The uncertainty distributions were estimated using MATLAB® distribution routines. 
These routines fit the data to a Cumulative Distribution Function (CDF). The CDF is the 
integral of the Probability Density Function (PDF). This work uses two-parameter 
distribution functions based on the physical process involved and on previous empirical 
studies of the appropriate distribution. The sampling of the CDF determines the 
exceedance probability of a given value, which is the most appropriate metric for risk 
assessments.97   Depending on the calculation of impacts, it is often advantageous to use 
the complimentary CDF (CCDF) which is just one minus the CDF. Many studies use 
exceedance probability98 for risk assessments.99,100,101 

To create the data set reported here, the gridded raw data from any CMIP model are first 
mapped onto a region using area-weighting. Even though the information is 
predominantly for use to calculate climate’s impact on humans, both population and 
economic weighting cause inconsistencies among the physical variables. Definitionally, 
the use of any country-level resolution assumes homogeneity within the country. Other 
weighting methods tacitly contradict that base assumption.102 

The resulting country level data from each individual model are then summed over the 
month of interest (if it is, for example, daily data), and over the years within the time 
interval. Each model represents one data point from which the probability distribution is 
estimated. As is statistically appropriate, this averaging method is applied even if the 
variable is the maximum temperature or maximum wind speed. Simplistically, if only the 
maximum of the maxima was used, the statistic would possibly only capture the 
temperature for the last year of the intervals (e.g., with idealized monotonically 

97 Ghosh, Subimal, and P. P. Mujumdar. "Climate change impact assessment: Uncertainty modeling with 
imprecise probability." Journal of Geophysical Research: Atmospheres 114.D18 (2009).  
98 For use in risk assessments, exceedance probability is typically used across bins. For example, suppose 
the analysis only considers 10 bins of exceedance probabilities; ten 10% intervals from 0 to 100%, starting 
at 5%. An impact model can calculate the consequence (e.g., economic or food loss compared to historical 
conditions) at each exceedance value.  There will be 10 points (5%, 15% …95%) that approximately 
capture the consequence over a 10% interval, centered at the designated exceedance probability. Risk is the 
sum of the consequences multiplied by the probability interval size.  Finer resolution can produce more 
precise answers, but not necessarily more accurate ones.
99 Hayhoe, Katharine, et al. "Emissions pathways, climate change, and impacts on California." Proceedings 
of the National Academy of Sciences of the United States of America 101.34 (2004): 12422-12427.
100 Kunreuther, Howard C., and Erwann O. Michel-Kerjan. Climate change, insurability of large-scale 
disasters and the emerging liability challenge. No. w12821. National Bureau of Economic Research, 2007.
101 Backus, George A., Thomas S. Lowry, and Drake E. Warren. "The near-term risk of climate uncertainty 
among the US states." Climatic Change 116.3-4 (2013): 495-522. 
http://link.springer.com/article/10.1007/s10584-012-0511-8 and Backus, George, et al. "Climate 
Uncertainty and Implications for US State-Level Risk Assessment Through 2050." SAND Report 7001 
(2009). Sandia National Laboratories, Albuquerque, NM, page 30. http://prod.sandia.gov/techlib/access-
control.cgi/2010/102052.pdf 
102 Backus, George, et al. "Climate Uncertainty and Implications for US State-Level Risk Assessment 
Through 2050." SAND Report 7001 (2009). Sandia National Laboratories, Albuquerque, NM, page 30. 
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf 

http://link.springer.com/article/10.1007/s10584-012-0511-8
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2010/102052.pdf
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increasing temperature). The goal here is to calculate the representative maximum 
temperature for the interval. Additionally, the use of the data will be in comparison to the 
delta change relative to the historical period. Essentially, the question boils down to how 
much on average is the maximum temperature, or any other variable, increasing or 
decreasing. 

Note that the extremes denoted by the tails of the uncertainty distribution for the variables 
do not, in themselves, represent an extreme in conditions. The variables themselves 
denote the average or the extremes, such as average surface temperature, and maximum 
wind speed, respectively. The uncertainty distribution is the envelope of values for the 
specific variable. Thus, a tail condition is merely a very unlikely value for that variable, 
which itself denotes average conditions. 

5.1 Estimation Results

The analysis results are presented in the Appendices. There is a separate appendix for the 
historical and forecast periods of each variable in Table 3.   The statistics for each 
variable cover a bin of years rather than one year. This approach reduces the amount of 
data presented and better reflects the variation in the variable over the period of time 
within that geographic location. All the reports are publicly available103 and the data 
are available upon request.104 

The tables typically provide statistical information for each decade. For the historical 
period, the single distribution corresponds to the time period of 1976 to 2005.  Economic 
and infrastructure models typically subsume a historical average weather condition within 
the analysis.  That is, the models completely neglect weather or implicitly assume an 
average value.  For use with climate impact simulations, this historical information can 
act as an initial condition or if the simulation includes historical reproduction, the 
historical parameterization can be used as the 1990 condition and the centroid of the 
2006-2015 parameterization can be used to interpolate between years.  The climatic 
changes within this time period are effectively linear over time, such that the parameters 
can be construed as simply the average value of “weather” over the period or as the 
climate centered around the year 1990.105  

The first forecast period is for the years 2006 through 2015 and a similar perspective 
would consider the uncertainty parameterization as the climate centered around the year 
2010.  Because risk assessments are not predictions, it would be acceptable to just sample 
the distribution each year for all the years in the interval. For more continuity, another 
logic would be to test the distributions that are on either side of the year of interest. For 
example, either 2004 or 2008 would use the historical and the first forecast interval.  
Draw a random number between 0 and 1.0 as the exceedance probability and determine 

103 https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/pubs.cfm
104 Contact Dr. Thomas Lowry, Sandia National Laboratories, tslowry@sandia.gov. 
105 The changes in climatological variables over the historical period are small and therefore using the 
single parameterization for all historical years or to interpolate is equally acceptable.

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/pubs.cfm
mailto://tslowry@sandia.gov
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the value for both the (1976-2005) historical and (20016-2015) forecast distributions. 
Interpolate the value for the year of interest and use that value for the determining the 
impact for that year for that sampling. The interpolation can be linear or exponential 
depending how important the rate of change across interjacent years is to the analysis. 
This interpolation process will work for any year of interest. The other forecast intervals 
in the “forecast” appendices are: 2016-2025, 2026-2035, 2036-2045, 2046-2055, 2056-
2065, 2066-2075, 2076-2085, and 2086-2100. The appendices note these intervals and 
the midpoint.  The 2086-2100 period covers 15 years, simply to ensure coverage over the 
full range of CMIP5 model outputs.
 
The parameterizations are provided for each month of the “decadal” periods to recognize 
the disproportional impacts over different months of the year, such as due to time 
windows for agriculture or construction.
  
The columns for all the tables first include the country, then the type of distribution,  the  
two parameters that define distribution (as noted in the next section), the standard error 
on the CDF estimate (the second order uncertainty), the beginning year of the data used 
to calculated the  distribution, the last  year of data used to calculate the distribution, the  
mid-year centroid,  the month  associated with the uncertainty distribution, and the short, 
CMIP5 variable name (noted earlier for each variable). In the appendices, the column 
headings have the appearance of Table 7. 

Country Distribution Parameter 1 Parameter 2 Std Error Start Year End Year Mid-Year Month Variable

Table 7: Appendix Column Designations

5.2. Probability Distributions

This section describes the basic information associated with each distribution, and most 
importantly, it shows the mapping of the estimated “Parameter 1” and “Parameter 2” 
noted in Table 7 (and the appendices) to the actual calculation of the distribution.  Each 
distribution used for describing the uncertainty of the variables will be discussed in turn. 
The discussion first presents the graphical106 portrayal of the distribution in its PDF form 
with representative parameter values. The CDF is not shown because all the distributions 
produce functions that have a sigmoidal shape and it is difficult to visually distinguish the 
unique characteristics of the CDF. The graphic is followed by the equation for the PDF 
and then the CDF. These equations are then followed by the calculations for the Mean, 
Median, and Mode, if they exist. Most statistical and analytical applications, such as R,107 
MATLAB,108 and EXCEL,109 have built-in routines to calculate these terms.

106 All graphics come from the Wikimedia commons. For more information, see the Wikipedia entry for the 
specified distribution.
107 https://www.r-project.org/ 
108 https://www.mathworks.com/products/matlab.html 
109 https://support.office.com/en-us/article/Statistical-functions-reference-624DAC86-A375-4435-BC25-
76D659719FFD 

https://www.r-project.org/
https://www.mathworks.com/products/matlab.html
https://support.office.com/en-us/article/Statistical-functions-reference-624DAC86-A375-4435-BC25-76D659719FFD
https://support.office.com/en-us/article/Statistical-functions-reference-624DAC86-A375-4435-BC25-76D659719FFD
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The first distribution is the Normal (Gaussian) distribution.110  It is used for variables that 
have small deviations from the historical norm over time or for those typically described 
in the literature with a Normal distribution.  

Normal Distribution: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟1 = 𝜇,  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟2 = 𝜎

Figure 10: Normal distribution

𝑃𝐷𝐹(𝑥) =
1

𝜎 ∗ 2𝜋
∗ 𝑒

‒ (
(𝑥 ‒ 𝜇)2

2 ∗ 𝜎2

𝐶𝐷𝐹(𝑥) =
1
2

∗ [1 + 𝑒𝑟𝑓⁡(
𝑥 ‒ 𝜇
𝜎 2

)]
Where  is the Error Function. erf ( ∙ )
𝑀𝑒𝑎𝑛 = 𝜇
𝑀𝑒𝑑𝑖𝑎𝑛 = 𝜇
𝑀𝑜𝑑𝑒 = 𝜇

110 The graphic is in the public domain. 
https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Normal_Distribution_PDF.svg 

P
D
F(
x)

https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Normal_Distribution_PDF.svg
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The second distribution is the lognormal.111 It is characterized as having only positive 
arguments (X values) and often a long tail to the right. Although this distribution is noted 
in the discussion of Arctic variables, the limited Arctic data indicated its actual use in 
uncertainty estimation was not justified. 

Lognormal Distribution: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟1 = 𝜎,  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟2 = 𝜇

Figure 11: Lognormal Distribution

𝑃𝐷𝐹(𝑥) =
1

𝑥𝜎 ∗ 2𝜋
∗ 𝑒

‒ (
(𝑙𝑛(𝑥) ‒ 𝜇)2

2 ∗ 𝜎2

𝐶𝐹𝐷(𝑥) =
1
2

∗ [1 + 𝑒𝑟𝑓⁡(
𝑙𝑛(𝑥) ‒ 𝜇

𝜎 2
)]

𝑀𝑒𝑎𝑛 = 𝑒𝜇 + 𝜎2/2

𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑒𝜇

𝑀𝑜𝑑𝑒 = 𝑒𝜇 ‒ 𝜎2

111 Graphic is in the public domain. https://en.wikipedia.org/wiki/Log-
normal_distribution#/media/File:PDF-log_normal_distributions.svg 

PD
F(
x)

 

https://en.wikipedia.org/wiki/Log-normal_distribution#/media/File:PDF-log_normal_distributions.svg
https://en.wikipedia.org/wiki/Log-normal_distribution#/media/File:PDF-log_normal_distributions.svg
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The next distribution is the Weibull.112 It is noted by having only positive arguments (X 
values) with highly varied behavior near the origin. 

Weibull Distribution: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟1 = 𝜆,  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟2 = 𝑘

Figure 12: Weibull Distribution

𝑃𝐷𝐹(𝑥) =
𝑘
𝜆

∗ (𝑥
𝜆)𝑘 ‒ 1 ∗ 𝑒

‒ (
𝑥
𝜆

)𝑘

𝐶𝐷𝐹(𝑥) = 1 ‒ 𝑒
‒ (

𝑥
𝜆

)𝑘

𝑀𝑒𝑎𝑛 = 𝜆 ∗ Γ(1 +
1
𝑘

)

𝑀𝑒𝑑𝑖𝑎𝑛 = 𝜆 ∗ (ln (2))1/𝑘

𝑀𝑜𝑑𝑒 = 𝜆 ∗ (𝑘 ‒ 1
𝑘 )

1
𝑘   𝑘 > 1

𝑀𝑜𝑑𝑒 = 0  𝑘 ≤ 1

Where  is the Gamma Function.Γ( ∙  )

A Weibull (1, β) random variable is an exponential random variable with mean β.

112 The graphic rights allow unlimited, free distribution. 
https://en.wikipedia.org/wiki/Weibull_distribution#/media/File:Weibull_PDF.svg 
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The Gamma distribution allows only positive arguments, but its parameters provide a 
high degree of flexibility in regard to the PDF shape.113 

Gamma Distribution: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟1 = 𝑘,  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟2 = 𝜃

Figure 13: Gamma Distribution

𝑃𝐷𝐹(𝑥) =
1

Γ(𝑘) ∗ 𝜃𝑘
∗ 𝑥𝑘 ‒ 1 ∗ 𝑒

‒
𝑥
𝜃 

𝐶𝐷𝐹(𝑥) = 1 ‒ Γ(𝑘,
𝑥
𝜃)/Γ(𝑘)

Where  is the Gamma Function and  is the Incomplete Gamma FunctionΓ( ∙ ) Γ(𝑘,𝑥/𝜃)

𝑀𝑒𝑎𝑛 = 𝑘𝜃

𝑀𝑒𝑑𝑖𝑎𝑛 ≈ 𝑘𝜃 ∗
3𝑘 ‒ 0.8
3𝑘 + 0.2

    𝑘 ≥ 1

113 The graphic rights allow unlimited, free distribution. 
https://en.wikipedia.org/wiki/Gamma_distribution#/media/File:Gamma_distribution_pdf.svg 
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51

𝑀𝑒𝑑𝑖𝑎𝑛 ≈ 𝜃 ∗ (0.391424𝑘4 ‒  1.29095𝑘3 +  1.6553𝑘2 ‒  0.0257641𝑘 ‒  0.0367065) 
 0.3 ≤ 𝑘 ≤ 1, 𝜃 ≪ 1.0

There is no closed-form solution for the median, but many mathematical packages have 
median calculators (e.g. MATLAB) 

𝑀𝑜𝑑𝑒 = (𝑘 ‒ 1) ∗ 𝜃  𝑘 ≥ 1
𝑀𝑜𝑑𝑒 = 0  𝑘 < 1

The shape of a Gamma distribution is quite flexible.  Note that when k equals one, the 
gamma distribution becomes an exponential distribution.

The Beta distribution only has arguments between 0.0 and 1.0, thus making it the 
description for variables describing a fraction ranging between 0.0 and 1.0.114

Beta Distribution: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟1 = 𝛼,  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟2 = 𝛽

Figure 14: Beta Distribution

𝑃𝐷𝐹(𝑥) =  𝑥𝛼 ‒ 1 ∗ (1 ‒ 𝑥)𝛽 ‒ 1 ∗
Γ(𝛼 + 𝛽)

Γ(𝛼) ∗ Γ(𝛽)

114 The graphic is in the public domain. https://en.wikipedia.org/wiki/File:Beta_distribution_pdf.svg 
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(x)

https://en.wikipedia.org/wiki/File:Beta_distribution_pdf.svg
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𝐶𝐷𝐹(𝑥) =
𝐵(𝑥;𝛼,𝛽) ∗ Γ(𝛼 + 𝛽)

 Γ(𝛼) ∗ Γ(𝛽)

Where  is the Incomplete Beta Function and   is the Gamma Function. 𝐵(𝑥;𝛼,𝛽) Γ( ∙ )

𝑀𝑒𝑎𝑛 =
𝛼

𝛼 + 𝛽

𝑀𝑜𝑑𝑒 =
𝛼 ‒ 1

𝛼 + 𝛽 ‒ 2
     𝛼,𝛽 > 1

𝑀𝑜𝑑𝑒 = 0     𝛼,𝛽 ≤ 1

𝑀𝑒𝑑𝑖𝑎𝑛 =  
Γ(𝛼) ∗ Γ(𝛽)

𝐵(1
2

;𝛼,𝛽) ∗ Γ(𝛼 + 𝛽)

𝑀𝑒𝑑𝑖𝑎𝑛 ≈
𝛼 ‒

1
3

 𝛼 + 𝛽 ‒ 2
   𝛼,𝛽 > 1

A Beta random variable with parameters α = β = 1 is a uniform random variable.
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The last distribution is the Gumbel distribution. It is related to the Weibull distribution 
through a log transformation.115 This gives the distribution a varied right tail compared 
the varied left tail of the Weibull.

Gumbel Distribution: Parameter1=μ, Parameter2=β

Figure 15: Gumbel Distribution

𝑃𝐷𝐹(𝑥) =
1
𝛽

∗ 𝑒 ‒ (𝑧 ‒ 𝑒 ‒ 𝑧)

Where: 
𝑧 =

(𝑥 ‒ 𝜇)
𝛽

𝐶𝐷𝐹(𝑥) = 𝑒 ‒ 𝑒 ‒ 𝑧

𝑀𝑒𝑎𝑛 = 𝜇 + 𝛽𝛾
Where γ is Euler’s constant.
𝑀𝑒𝑑𝑖𝑎𝑛 = 𝜇 ‒ 𝛽 ∗ 𝑙𝑛⁡(ln (2))
𝑀𝑜𝑑𝑒 = 𝜇

115 The graphic is in the public domain. 
https://en.wikipedia.org/wiki/Gumbel_distribution#/media/File:Gumbel-Density.svg 
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6. SUMMARY: USING THE DATA

To make the documents manageable, the appendices are in 26 separate volumes. Each of 
the appendices contain information on a single variable. The available variables are noted 
in Table 3 of Section 3.1. The appendix is designated by the variable of interest. If the 
variable is country-based, then the data covers each of 169 countries (and autonomous 
areas) noted in Table 2 of Section 2.5. If the variable is Arctic-based, then the data cover 
each of the 26 geographical areas noted in Figures 7 and 8 of Section 3.2. 

All the reports are publicly available116 and the data are available upon request.117 

The data columns for all the tables first include the country, then the type of distribution,  
the  two parameters that define the distribution (as noted in the Chapter 5), the standard 
error on the CDF estimate (the second order uncertainty), the beginning year of the data 
used to calculate the  distribution, the last year of data used to calculate the distribution, 
the  mid-year centroid, the month  associated with the uncertainty distribution, and the 
short CMIP5 variable name (noted in Table 3). The column headings look like those 
shown previously in Table 7. 

The historical data only consider the referent 30-year period of 1976-2005.  The forecast 
contains data for each decadal period from 2006 through 2100.  Section 5.1 discusses the 
interpolation process for any specific or sequence of years between 1976 and 2100, 
should that be crucial to the risk analysis.  

Background on the probability distribution (Section 5.2) is repeated in each appendix for 
the specific distribution used to represent the uncertainty of the variable featured in that 
appendix.  Sampling is typically performed on the cumulative distribution function 
(CDF).  The parameters define the values of the function and sampling defines the 
selected exceedance probability. The statistical language R, MATLAB, and Microsoft 
EXCEL contain routines for calculating the inverse of the CDFs noted here. Given the 
exceedance probability, the inverse determines the value of the variable, which can then 
be directly included in the impact analysis.  The impact and the probability determine the 
risk profile.118  

The data for each variable are contained in the report appendices, as noted in Table 8 on 
the next page.  Despite its quantity, the data is quite easy to use for most applications.  
Select the variable of interest, go to the forecast volume and go to the country of interest. 
Go to the time period of interest and see the month or months of interest.  For most 
analyses, just note the distribution type and record the two parameters.  Do the same for 
the historical appendix. For history, just record the two parameters for the country and 
month(s). You can use most statistical or simulation applications to calculate the 

116 https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/pubs.cfm
117 Contact Dr. Thomas Lowry, Sandia National Laboratories, tslowry@sandia.gov. 
118 Backus, George A., Thomas S. Lowry, and Drake E. Warren. "The near-term risk of climate uncertainty 
among the US states." Climatic Change 116.3-4 (2013): 495-522. 
http://link.springer.com/article/10.1007/s10584-012-0511-8 

https://cfwebprod.sandia.gov/cfdocs/CompResearch/templates/insert/pubs.cfm
mailto://tslowry@sandia.gov
http://link.springer.com/article/10.1007/s10584-012-0511-8
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historical mean with them. You can use the parameters from the forecast volume and 
your statistical or simulation package to sample for the future value at an exceedance 
probability. Take the ratio or delta between the forecast and historical values as input to 
the impact analysis.  This approach conforms to the most basic analysis. As noted in the 
earlier chapters, the data can be used for much more sophisticated analyses.  

Volume Appendix Description Unit of Measure Time Period
1 - Main Text All All
2 A Near-Surface Air Temperature K Historical
3 B Near-Surface Air Temperature K Forecast
4 C Maximum Near-Surface Air Temperature K Historical
5 D Maximum Near-Surface Air Temperature K Forecast
6 E Minimum Near-Surface Air Temperature K Historical
7 F Minimum Near-Surface Air Temperature K Forecast
8 G Precipitation m/day Historical
9 H Precipitation m/day Forecast
10 I Evaporation m/day Historical 
11 J Evaporation m/day Forecast
12 K Near-Surface Relative Humidity % (monthly mean) Historical
13 L Near Surface Relative Humidity % (monthly mean) Forecast
14 M Surface Runoff m3/day Historical
15 N Surface Runoff m3/day Forecast
16 O Soil Moisture (Upper Column) m3/m3 Historical
17 P Soil Moisture (Upper Column) m3/m3 Forecast
18 Q Maximum Near-Surface Wind Speed m/day Historical
19 R Maximum Near-Surface Wind Speed m/day Forecast
20 S Sea Ice Area Fraction m2/m2 Historical
21 T Sea Ice Area Fraction m2/m2 Forecast
22 U Sea Ice Thickness M Historical
23 V Sea Ice Thickness M Forecast
24 W Age of Sea Ice day Historical
25 X Age of Sea Ice day Forecast
26 Y Sea Ice Ridging Rate (m2/day)/m2 Historical
27 Z Sea Ice Ridging Rate (m2/day)/m2 Forecast

Table 8: Report Volume to Variable-Data Mapping
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